XFT: Unlocking the Power of Code Instruction Tuning by Simply Merging Upcycled Mixture-of-Experts Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.15247
We introduce XFT, a simple yet powerful training scheme, by simply merging upcycled Mixture-of-Experts (MoE) to unleash the performance limit of instruction-tuned code Large Language Models (LLMs). While vanilla sparse upcycling fails to improve instruction tuning, XFT introduces a shared expert mechanism with a novel routing weight normalization strategy into sparse upcycling, which significantly boosts instruction tuning. After fine-tuning the upcycled MoE model, XFT introduces a learnable model merging mechanism to compile the upcycled MoE model back to a dense model, achieving upcycled MoE-level performance with only dense-model compute. By applying XFT to a 1.3B model, we create a new state-of-the-art tiny code LLM (<3B) with 67.1 and 64.6 pass@1 on HumanEval and HumanEval+ respectively. With the same data and model architecture, XFT improves supervised fine-tuning (SFT) by 13% on HumanEval+, along with consistent improvements from 2% to 13% on MBPP+, MultiPL-E, and DS-1000, demonstrating its generalizability. XFT is fully orthogonal to existing techniques such as Evol-Instruct and OSS-Instruct, opening a new dimension for improving code instruction tuning. Codes are available at https://github.com/ise-uiuc/xft.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.15247
- https://arxiv.org/pdf/2404.15247
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4395443836
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4395443836Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.15247Digital Object Identifier
- Title
-
XFT: Unlocking the Power of Code Instruction Tuning by Simply Merging Upcycled Mixture-of-ExpertsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-23Full publication date if available
- Authors
-
Yifeng Ding, Jiawei Liu, Yuxiang Wei, Terry Yue Zhuo, Lingming ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.15247Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.15247Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.15247Direct OA link when available
- Concepts
-
Code (set theory), Power (physics), Computer science, Programming language, Physics, Quantum mechanics, Set (abstract data type)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4395443836 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.15247 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.15247 |
| ids.openalex | https://openalex.org/W4395443836 |
| fwci | |
| type | preprint |
| title | XFT: Unlocking the Power of Code Instruction Tuning by Simply Merging Upcycled Mixture-of-Experts |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11309 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9624999761581421 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Music and Audio Processing |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9621999859809875 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T12072 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9585000276565552 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776760102 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7089268565177917 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[0].display_name | Code (set theory) |
| concepts[1].id | https://openalex.org/C163258240 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5835591554641724 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[1].display_name | Power (physics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5453017950057983 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C199360897 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3329571783542633 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[3].display_name | Programming language |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.14584851264953613 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C62520636 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[5].display_name | Quantum mechanics |
| concepts[6].id | https://openalex.org/C177264268 |
| concepts[6].level | 2 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[6].display_name | Set (abstract data type) |
| keywords[0].id | https://openalex.org/keywords/code |
| keywords[0].score | 0.7089268565177917 |
| keywords[0].display_name | Code (set theory) |
| keywords[1].id | https://openalex.org/keywords/power |
| keywords[1].score | 0.5835591554641724 |
| keywords[1].display_name | Power (physics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5453017950057983 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/programming-language |
| keywords[3].score | 0.3329571783542633 |
| keywords[3].display_name | Programming language |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.14584851264953613 |
| keywords[4].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.15247 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.15247 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.15247 |
| locations[1].id | doi:10.48550/arxiv.2404.15247 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.15247 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100954379 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-2856-2271 |
| authorships[0].author.display_name | Yifeng Ding |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ding, Yifeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100320734 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7122-8625 |
| authorships[1].author.display_name | Jiawei Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Jiawei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058312928 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4391-3753 |
| authorships[2].author.display_name | Yuxiang Wei |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wei, Yuxiang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5082624117 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5760-5188 |
| authorships[3].author.display_name | Terry Yue Zhuo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhuo, Terry Yue |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5043546718 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5175-2702 |
| authorships[4].author.display_name | Lingming Zhang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhang, Lingming |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.15247 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | XFT: Unlocking the Power of Code Instruction Tuning by Simply Merging Upcycled Mixture-of-Experts |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11309 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9624999761581421 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Music and Audio Processing |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W4395014643, https://openalex.org/W4391913857, https://openalex.org/W2350741829 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.15247 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.15247 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.15247 |
| primary_location.id | pmh:oai:arXiv.org:2404.15247 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.15247 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.15247 |
| publication_date | 2024-04-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 38, 43, 65, 78, 93, 98, 160 |
| abstract_inverted_index.2% | 136 |
| abstract_inverted_index.By | 89 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 155 |
| abstract_inverted_index.at | 171 |
| abstract_inverted_index.by | 9, 127 |
| abstract_inverted_index.is | 148 |
| abstract_inverted_index.of | 20 |
| abstract_inverted_index.on | 110, 129, 139 |
| abstract_inverted_index.to | 15, 32, 70, 77, 92, 137, 151 |
| abstract_inverted_index.we | 96 |
| abstract_inverted_index.13% | 128, 138 |
| abstract_inverted_index.LLM | 103 |
| abstract_inverted_index.MoE | 61, 74 |
| abstract_inverted_index.XFT | 36, 63, 91, 122, 147 |
| abstract_inverted_index.and | 107, 112, 119, 142, 157 |
| abstract_inverted_index.are | 169 |
| abstract_inverted_index.for | 163 |
| abstract_inverted_index.its | 145 |
| abstract_inverted_index.new | 99, 161 |
| abstract_inverted_index.the | 17, 59, 72, 116 |
| abstract_inverted_index.yet | 5 |
| abstract_inverted_index.1.3B | 94 |
| abstract_inverted_index.64.6 | 108 |
| abstract_inverted_index.67.1 | 106 |
| abstract_inverted_index.With | 115 |
| abstract_inverted_index.XFT, | 2 |
| abstract_inverted_index.back | 76 |
| abstract_inverted_index.code | 22, 102, 165 |
| abstract_inverted_index.data | 118 |
| abstract_inverted_index.from | 135 |
| abstract_inverted_index.into | 49 |
| abstract_inverted_index.only | 86 |
| abstract_inverted_index.same | 117 |
| abstract_inverted_index.such | 154 |
| abstract_inverted_index.tiny | 101 |
| abstract_inverted_index.with | 42, 85, 105, 132 |
| abstract_inverted_index.(MoE) | 14 |
| abstract_inverted_index.(SFT) | 126 |
| abstract_inverted_index.After | 57 |
| abstract_inverted_index.Codes | 168 |
| abstract_inverted_index.Large | 23 |
| abstract_inverted_index.While | 27 |
| abstract_inverted_index.along | 131 |
| abstract_inverted_index.dense | 79 |
| abstract_inverted_index.fails | 31 |
| abstract_inverted_index.fully | 149 |
| abstract_inverted_index.limit | 19 |
| abstract_inverted_index.model | 67, 75, 120 |
| abstract_inverted_index.novel | 44 |
| abstract_inverted_index.which | 52 |
| abstract_inverted_index.MBPP+, | 140 |
| abstract_inverted_index.Models | 25 |
| abstract_inverted_index.boosts | 54 |
| abstract_inverted_index.create | 97 |
| abstract_inverted_index.expert | 40 |
| abstract_inverted_index.model, | 62, 80, 95 |
| abstract_inverted_index.pass@1 | 109 |
| abstract_inverted_index.shared | 39 |
| abstract_inverted_index.simple | 4 |
| abstract_inverted_index.simply | 10 |
| abstract_inverted_index.sparse | 29, 50 |
| abstract_inverted_index.weight | 46 |
| abstract_inverted_index.(LLMs). | 26 |
| abstract_inverted_index.compile | 71 |
| abstract_inverted_index.improve | 33 |
| abstract_inverted_index.merging | 11, 68 |
| abstract_inverted_index.opening | 159 |
| abstract_inverted_index.routing | 45 |
| abstract_inverted_index.scheme, | 8 |
| abstract_inverted_index.tuning, | 35 |
| abstract_inverted_index.tuning. | 56, 167 |
| abstract_inverted_index.unleash | 16 |
| abstract_inverted_index.vanilla | 28 |
| abstract_inverted_index.(<3B) | 104 |
| abstract_inverted_index.DS-1000, | 143 |
| abstract_inverted_index.Language | 24 |
| abstract_inverted_index.applying | 90 |
| abstract_inverted_index.compute. | 88 |
| abstract_inverted_index.existing | 152 |
| abstract_inverted_index.improves | 123 |
| abstract_inverted_index.powerful | 6 |
| abstract_inverted_index.strategy | 48 |
| abstract_inverted_index.training | 7 |
| abstract_inverted_index.upcycled | 12, 60, 73, 82 |
| abstract_inverted_index.HumanEval | 111 |
| abstract_inverted_index.MoE-level | 83 |
| abstract_inverted_index.achieving | 81 |
| abstract_inverted_index.available | 170 |
| abstract_inverted_index.dimension | 162 |
| abstract_inverted_index.improving | 164 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.learnable | 66 |
| abstract_inverted_index.mechanism | 41, 69 |
| abstract_inverted_index.upcycling | 30 |
| abstract_inverted_index.HumanEval+ | 113 |
| abstract_inverted_index.MultiPL-E, | 141 |
| abstract_inverted_index.consistent | 133 |
| abstract_inverted_index.introduces | 37, 64 |
| abstract_inverted_index.orthogonal | 150 |
| abstract_inverted_index.supervised | 124 |
| abstract_inverted_index.techniques | 153 |
| abstract_inverted_index.upcycling, | 51 |
| abstract_inverted_index.HumanEval+, | 130 |
| abstract_inverted_index.dense-model | 87 |
| abstract_inverted_index.fine-tuning | 58, 125 |
| abstract_inverted_index.instruction | 34, 55, 166 |
| abstract_inverted_index.performance | 18, 84 |
| abstract_inverted_index.improvements | 134 |
| abstract_inverted_index.Evol-Instruct | 156 |
| abstract_inverted_index.OSS-Instruct, | 158 |
| abstract_inverted_index.architecture, | 121 |
| abstract_inverted_index.demonstrating | 144 |
| abstract_inverted_index.normalization | 47 |
| abstract_inverted_index.respectively. | 114 |
| abstract_inverted_index.significantly | 53 |
| abstract_inverted_index.state-of-the-art | 100 |
| abstract_inverted_index.generalizability. | 146 |
| abstract_inverted_index.instruction-tuned | 21 |
| abstract_inverted_index.Mixture-of-Experts | 13 |
| abstract_inverted_index.https://github.com/ise-uiuc/xft. | 172 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |