XMal-CNN: An Explainable Deep Neural Model for Automated Malaria Detection from Blood Smear Images Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.36548/jiip.2025.3.010
Malaria is a severe and critical health issue widespread throughout the globe. Malaria must be diagnosed correctly and efficiently in its initial stage in order to treat and cure it before it becomes a terminal illness. The current paper describes XMal-CNN, a novel deep learning approach to be utilized in automated malaria diagnosis from microscopic blood smear images. The proposed structure utilizes a depth-wise Convolutional Neural Network (CNN) with a Squeeze and Excitation (SE) block to increase feature representation and perform classification of images. The suggested approach model performs in such a way that it surpasses baseline CNNs and currently existing state-of-the-art approaches, achieving 95.26% accuracy, 93.97% precision, 96.73% recall, and 95.33% F1-score. To improve model interpretability and explainability, Explainable AI (XAI) techniques such as LIME and Grad-CAM++ are used, providing useful insights and understanding of the decision making process of the model. Systematic and extensive evaluations on benchmark blood smear image datasets are conducted to validate the performance and explainability of the proposed model. Due to its superior diagnostic precision and interpretability, XMal-CNN becomes a trustworthy and important AI-assisted tool, aiding healthcare experts in making informed and data-driven decisions to diagnose and treat malaria.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.36548/jiip.2025.3.010
- OA Status
- diamond
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4414094584
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414094584Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36548/jiip.2025.3.010Digital Object Identifier
- Title
-
XMal-CNN: An Explainable Deep Neural Model for Automated Malaria Detection from Blood Smear ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-01Full publication date if available
- Authors
-
R. N. Patel, Safvan VahoraList of authors in order
- Landing page
-
https://doi.org/10.36548/jiip.2025.3.010Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.36548/jiip.2025.3.010Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4414094584 |
|---|---|
| doi | https://doi.org/10.36548/jiip.2025.3.010 |
| ids.doi | https://doi.org/10.36548/jiip.2025.3.010 |
| ids.openalex | https://openalex.org/W4414094584 |
| fwci | 0.0 |
| type | article |
| title | XMal-CNN: An Explainable Deep Neural Model for Automated Malaria Detection from Blood Smear Images |
| biblio.issue | 3 |
| biblio.volume | 7 |
| biblio.last_page | 758 |
| biblio.first_page | 739 |
| topics[0].id | https://openalex.org/T12874 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Imaging for Blood Diseases |
| topics[1].id | https://openalex.org/T10616 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9470999836921692 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Smart Agriculture and AI |
| topics[2].id | https://openalex.org/T12859 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9402999877929688 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1304 |
| topics[2].subfield.display_name | Biophysics |
| topics[2].display_name | Cell Image Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.36548/jiip.2025.3.010 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210207215 |
| locations[0].source.issn | 2582-4252 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2582-4252 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Innovative Image Processing |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Innovative Image Processing |
| locations[0].landing_page_url | https://doi.org/10.36548/jiip.2025.3.010 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5083581064 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1630-7256 |
| authorships[0].author.display_name | R. N. Patel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | RiddhiKumari Patel |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5043508922 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8051-8429 |
| authorships[1].author.display_name | Safvan Vahora |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Safvan Vahora |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.36548/jiip.2025.3.010 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | XMal-CNN: An Explainable Deep Neural Model for Automated Malaria Detection from Blood Smear Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12874 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Imaging for Blood Diseases |
| related_works | https://openalex.org/W2115261803, https://openalex.org/W4367362025, https://openalex.org/W2108574175, https://openalex.org/W2347627655, https://openalex.org/W1477123016, https://openalex.org/W2386208584, https://openalex.org/W2226154164, https://openalex.org/W2368864186, https://openalex.org/W3182922836, https://openalex.org/W1966253867 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36548/jiip.2025.3.010 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210207215 |
| best_oa_location.source.issn | 2582-4252 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2582-4252 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Innovative Image Processing |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Innovative Image Processing |
| best_oa_location.landing_page_url | https://doi.org/10.36548/jiip.2025.3.010 |
| primary_location.id | doi:10.36548/jiip.2025.3.010 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210207215 |
| primary_location.source.issn | 2582-4252 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2582-4252 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Innovative Image Processing |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Innovative Image Processing |
| primary_location.landing_page_url | https://doi.org/10.36548/jiip.2025.3.010 |
| publication_date | 2025-09-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2131478872, https://openalex.org/W4223597284, https://openalex.org/W4239427216, https://openalex.org/W4396581755, https://openalex.org/W4399507696, https://openalex.org/W4386025217, https://openalex.org/W4401625984, https://openalex.org/W4385546128, https://openalex.org/W4283587055, https://openalex.org/W3042611975, https://openalex.org/W3107404799, https://openalex.org/W3042926029, https://openalex.org/W3210548318, https://openalex.org/W3004313878, https://openalex.org/W4385954194, https://openalex.org/W4393146298, https://openalex.org/W4318776599, https://openalex.org/W4294186675, https://openalex.org/W4394844844, https://openalex.org/W4399509051, https://openalex.org/W2783699776, https://openalex.org/W2022530970, https://openalex.org/W2765793020 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 2, 33, 41, 62, 69, 91, 175 |
| abstract_inverted_index.AI | 120 |
| abstract_inverted_index.To | 113 |
| abstract_inverted_index.as | 124 |
| abstract_inverted_index.be | 14, 47 |
| abstract_inverted_index.in | 19, 23, 49, 89, 184 |
| abstract_inverted_index.is | 1 |
| abstract_inverted_index.it | 29, 31, 94 |
| abstract_inverted_index.of | 82, 135, 140, 161 |
| abstract_inverted_index.on | 147 |
| abstract_inverted_index.to | 25, 46, 75, 155, 166, 190 |
| abstract_inverted_index.Due | 165 |
| abstract_inverted_index.The | 36, 58, 84 |
| abstract_inverted_index.and | 4, 17, 27, 71, 79, 98, 110, 117, 126, 133, 144, 159, 171, 177, 187, 192 |
| abstract_inverted_index.are | 128, 153 |
| abstract_inverted_index.its | 20, 167 |
| abstract_inverted_index.the | 10, 136, 141, 157, 162 |
| abstract_inverted_index.way | 92 |
| abstract_inverted_index.(SE) | 73 |
| abstract_inverted_index.CNNs | 97 |
| abstract_inverted_index.LIME | 125 |
| abstract_inverted_index.cure | 28 |
| abstract_inverted_index.deep | 43 |
| abstract_inverted_index.from | 53 |
| abstract_inverted_index.must | 13 |
| abstract_inverted_index.such | 90, 123 |
| abstract_inverted_index.that | 93 |
| abstract_inverted_index.with | 68 |
| abstract_inverted_index.(CNN) | 67 |
| abstract_inverted_index.(XAI) | 121 |
| abstract_inverted_index.block | 74 |
| abstract_inverted_index.blood | 55, 149 |
| abstract_inverted_index.image | 151 |
| abstract_inverted_index.issue | 7 |
| abstract_inverted_index.model | 87, 115 |
| abstract_inverted_index.novel | 42 |
| abstract_inverted_index.order | 24 |
| abstract_inverted_index.paper | 38 |
| abstract_inverted_index.smear | 56, 150 |
| abstract_inverted_index.stage | 22 |
| abstract_inverted_index.tool, | 180 |
| abstract_inverted_index.treat | 26, 193 |
| abstract_inverted_index.used, | 129 |
| abstract_inverted_index.93.97% | 106 |
| abstract_inverted_index.95.26% | 104 |
| abstract_inverted_index.95.33% | 111 |
| abstract_inverted_index.96.73% | 108 |
| abstract_inverted_index.Neural | 65 |
| abstract_inverted_index.aiding | 181 |
| abstract_inverted_index.before | 30 |
| abstract_inverted_index.globe. | 11 |
| abstract_inverted_index.health | 6 |
| abstract_inverted_index.making | 138, 185 |
| abstract_inverted_index.model. | 142, 164 |
| abstract_inverted_index.severe | 3 |
| abstract_inverted_index.useful | 131 |
| abstract_inverted_index.Malaria | 0, 12 |
| abstract_inverted_index.Network | 66 |
| abstract_inverted_index.Squeeze | 70 |
| abstract_inverted_index.becomes | 32, 174 |
| abstract_inverted_index.current | 37 |
| abstract_inverted_index.experts | 183 |
| abstract_inverted_index.feature | 77 |
| abstract_inverted_index.images. | 57, 83 |
| abstract_inverted_index.improve | 114 |
| abstract_inverted_index.initial | 21 |
| abstract_inverted_index.malaria | 51 |
| abstract_inverted_index.perform | 80 |
| abstract_inverted_index.process | 139 |
| abstract_inverted_index.recall, | 109 |
| abstract_inverted_index.XMal-CNN | 173 |
| abstract_inverted_index.approach | 45, 86 |
| abstract_inverted_index.baseline | 96 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.datasets | 152 |
| abstract_inverted_index.decision | 137 |
| abstract_inverted_index.diagnose | 191 |
| abstract_inverted_index.existing | 100 |
| abstract_inverted_index.illness. | 35 |
| abstract_inverted_index.increase | 76 |
| abstract_inverted_index.informed | 186 |
| abstract_inverted_index.insights | 132 |
| abstract_inverted_index.learning | 44 |
| abstract_inverted_index.malaria. | 194 |
| abstract_inverted_index.performs | 88 |
| abstract_inverted_index.proposed | 59, 163 |
| abstract_inverted_index.superior | 168 |
| abstract_inverted_index.terminal | 34 |
| abstract_inverted_index.utilized | 48 |
| abstract_inverted_index.utilizes | 61 |
| abstract_inverted_index.validate | 156 |
| abstract_inverted_index.F1-score. | 112 |
| abstract_inverted_index.XMal-CNN, | 40 |
| abstract_inverted_index.accuracy, | 105 |
| abstract_inverted_index.achieving | 103 |
| abstract_inverted_index.automated | 50 |
| abstract_inverted_index.benchmark | 148 |
| abstract_inverted_index.conducted | 154 |
| abstract_inverted_index.correctly | 16 |
| abstract_inverted_index.currently | 99 |
| abstract_inverted_index.decisions | 189 |
| abstract_inverted_index.describes | 39 |
| abstract_inverted_index.diagnosed | 15 |
| abstract_inverted_index.diagnosis | 52 |
| abstract_inverted_index.extensive | 145 |
| abstract_inverted_index.important | 178 |
| abstract_inverted_index.precision | 170 |
| abstract_inverted_index.providing | 130 |
| abstract_inverted_index.structure | 60 |
| abstract_inverted_index.suggested | 85 |
| abstract_inverted_index.surpasses | 95 |
| abstract_inverted_index.Excitation | 72 |
| abstract_inverted_index.Grad-CAM++ | 127 |
| abstract_inverted_index.Systematic | 143 |
| abstract_inverted_index.depth-wise | 63 |
| abstract_inverted_index.diagnostic | 169 |
| abstract_inverted_index.healthcare | 182 |
| abstract_inverted_index.precision, | 107 |
| abstract_inverted_index.techniques | 122 |
| abstract_inverted_index.throughout | 9 |
| abstract_inverted_index.widespread | 8 |
| abstract_inverted_index.AI-assisted | 179 |
| abstract_inverted_index.Explainable | 119 |
| abstract_inverted_index.approaches, | 102 |
| abstract_inverted_index.data-driven | 188 |
| abstract_inverted_index.efficiently | 18 |
| abstract_inverted_index.evaluations | 146 |
| abstract_inverted_index.microscopic | 54 |
| abstract_inverted_index.performance | 158 |
| abstract_inverted_index.trustworthy | 176 |
| abstract_inverted_index.Convolutional | 64 |
| abstract_inverted_index.understanding | 134 |
| abstract_inverted_index.classification | 81 |
| abstract_inverted_index.explainability | 160 |
| abstract_inverted_index.representation | 78 |
| abstract_inverted_index.explainability, | 118 |
| abstract_inverted_index.interpretability | 116 |
| abstract_inverted_index.state-of-the-art | 101 |
| abstract_inverted_index.interpretability, | 172 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.42868047 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |