Zero-Shot Aspect-Based Sentiment Analysis Article Swipe
Lei Shu
,
Xu Hu
,
Bing Liu
,
Jiahua Chen
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.01924
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.01924
Aspect-based sentiment analysis (ABSA) typically requires in-domain annotated data for supervised training/fine-tuning. It is a big challenge to scale ABSA to a large number of new domains. This paper aims to train a unified model that can perform zero-shot ABSA without using any annotated data for a new domain. We propose a method called contrastive post-training on review Natural Language Inference (CORN). Later ABSA tasks can be cast into NLI for zero-shot transfer. We evaluate CORN on ABSA tasks, ranging from aspect extraction (AE), aspect sentiment classification (ASC), to end-to-end aspect-based sentiment analysis (E2E ABSA), which show ABSA can be conducted without any human annotated ABSA data.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2202.01924
- https://arxiv.org/pdf/2202.01924
- OA Status
- green
- Cited By
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225916008
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225916008Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2202.01924Digital Object Identifier
- Title
-
Zero-Shot Aspect-Based Sentiment AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-04Full publication date if available
- Authors
-
Lei Shu, Xu Hu, Bing Liu, Jiahua ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2202.01924Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2202.01924Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.01924Direct OA link when available
- Concepts
-
Sentiment analysis, Computer science, Artificial intelligence, Domain (mathematical analysis), Shot (pellet), Natural language processing, Inference, Zero (linguistics), Mathematics, Linguistics, Philosophy, Mathematical analysis, Organic chemistry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 6Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225916008 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2202.01924 |
| ids.doi | https://doi.org/10.48550/arxiv.2202.01924 |
| ids.openalex | https://openalex.org/W4225916008 |
| fwci | |
| type | preprint |
| title | Zero-Shot Aspect-Based Sentiment Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10664 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Sentiment Analysis and Opinion Mining |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T13910 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9836999773979187 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3300 |
| topics[2].subfield.display_name | General Social Sciences |
| topics[2].display_name | Computational and Text Analysis Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C66402592 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7239677906036377 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2271421 |
| concepts[0].display_name | Sentiment analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7179073095321655 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5430812239646912 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C36503486 |
| concepts[3].level | 2 |
| concepts[3].score | 0.523430347442627 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[3].display_name | Domain (mathematical analysis) |
| concepts[4].id | https://openalex.org/C2778344882 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5160350799560547 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[4].display_name | Shot (pellet) |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.503243625164032 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C2776214188 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4909351170063019 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[6].display_name | Inference |
| concepts[7].id | https://openalex.org/C2780813799 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48771604895591736 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3274237 |
| concepts[7].display_name | Zero (linguistics) |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.13578540086746216 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C41895202 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1210225522518158 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[9].display_name | Linguistics |
| concepts[10].id | https://openalex.org/C138885662 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[10].display_name | Philosophy |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C178790620 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[12].display_name | Organic chemistry |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/sentiment-analysis |
| keywords[0].score | 0.7239677906036377 |
| keywords[0].display_name | Sentiment analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7179073095321655 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5430812239646912 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/domain |
| keywords[3].score | 0.523430347442627 |
| keywords[3].display_name | Domain (mathematical analysis) |
| keywords[4].id | https://openalex.org/keywords/shot |
| keywords[4].score | 0.5160350799560547 |
| keywords[4].display_name | Shot (pellet) |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.503243625164032 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/inference |
| keywords[6].score | 0.4909351170063019 |
| keywords[6].display_name | Inference |
| keywords[7].id | https://openalex.org/keywords/zero |
| keywords[7].score | 0.48771604895591736 |
| keywords[7].display_name | Zero (linguistics) |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.13578540086746216 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/linguistics |
| keywords[9].score | 0.1210225522518158 |
| keywords[9].display_name | Linguistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2202.01924 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2202.01924 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2202.01924 |
| locations[1].id | doi:10.48550/arxiv.2202.01924 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2202.01924 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5007723627 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6700-9347 |
| authorships[0].author.display_name | Lei Shu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shu, Lei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100385219 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6345-2448 |
| authorships[1].author.display_name | Xu Hu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Hu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100339927 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4096-6980 |
| authorships[2].author.display_name | Bing Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Bing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5030780941 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8064-4444 |
| authorships[3].author.display_name | Jiahua Chen |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chen, Jiahua |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.01924 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Zero-Shot Aspect-Based Sentiment Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10664 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Sentiment Analysis and Opinion Mining |
| related_works | https://openalex.org/W2074502265, https://openalex.org/W4214877189, https://openalex.org/W2773965352, https://openalex.org/W2381179799, https://openalex.org/W2980279061, https://openalex.org/W2334685461, https://openalex.org/W3089396779, https://openalex.org/W2366718574, https://openalex.org/W2548633793, https://openalex.org/W2359774528 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.01924 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.01924 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.01924 |
| primary_location.id | pmh:oai:arXiv.org:2202.01924 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2202.01924 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2202.01924 |
| publication_date | 2022-02-04 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 14, 21, 32, 46, 51 |
| abstract_inverted_index.It | 12 |
| abstract_inverted_index.We | 49, 73 |
| abstract_inverted_index.be | 66, 99 |
| abstract_inverted_index.is | 13 |
| abstract_inverted_index.of | 24 |
| abstract_inverted_index.on | 56, 76 |
| abstract_inverted_index.to | 17, 20, 30, 88 |
| abstract_inverted_index.NLI | 69 |
| abstract_inverted_index.any | 42, 102 |
| abstract_inverted_index.big | 15 |
| abstract_inverted_index.can | 36, 65, 98 |
| abstract_inverted_index.for | 9, 45, 70 |
| abstract_inverted_index.new | 25, 47 |
| abstract_inverted_index.(E2E | 93 |
| abstract_inverted_index.ABSA | 19, 39, 63, 77, 97, 105 |
| abstract_inverted_index.CORN | 75 |
| abstract_inverted_index.This | 27 |
| abstract_inverted_index.aims | 29 |
| abstract_inverted_index.cast | 67 |
| abstract_inverted_index.data | 8, 44 |
| abstract_inverted_index.from | 80 |
| abstract_inverted_index.into | 68 |
| abstract_inverted_index.show | 96 |
| abstract_inverted_index.that | 35 |
| abstract_inverted_index.(AE), | 83 |
| abstract_inverted_index.Later | 62 |
| abstract_inverted_index.data. | 106 |
| abstract_inverted_index.human | 103 |
| abstract_inverted_index.large | 22 |
| abstract_inverted_index.model | 34 |
| abstract_inverted_index.paper | 28 |
| abstract_inverted_index.scale | 18 |
| abstract_inverted_index.tasks | 64 |
| abstract_inverted_index.train | 31 |
| abstract_inverted_index.using | 41 |
| abstract_inverted_index.which | 95 |
| abstract_inverted_index.(ABSA) | 3 |
| abstract_inverted_index.(ASC), | 87 |
| abstract_inverted_index.ABSA), | 94 |
| abstract_inverted_index.aspect | 81, 84 |
| abstract_inverted_index.called | 53 |
| abstract_inverted_index.method | 52 |
| abstract_inverted_index.number | 23 |
| abstract_inverted_index.review | 57 |
| abstract_inverted_index.tasks, | 78 |
| abstract_inverted_index.(CORN). | 61 |
| abstract_inverted_index.Natural | 58 |
| abstract_inverted_index.domain. | 48 |
| abstract_inverted_index.perform | 37 |
| abstract_inverted_index.propose | 50 |
| abstract_inverted_index.ranging | 79 |
| abstract_inverted_index.unified | 33 |
| abstract_inverted_index.without | 40, 101 |
| abstract_inverted_index.Language | 59 |
| abstract_inverted_index.analysis | 2, 92 |
| abstract_inverted_index.domains. | 26 |
| abstract_inverted_index.evaluate | 74 |
| abstract_inverted_index.requires | 5 |
| abstract_inverted_index.Inference | 60 |
| abstract_inverted_index.annotated | 7, 43, 104 |
| abstract_inverted_index.challenge | 16 |
| abstract_inverted_index.conducted | 100 |
| abstract_inverted_index.in-domain | 6 |
| abstract_inverted_index.sentiment | 1, 85, 91 |
| abstract_inverted_index.transfer. | 72 |
| abstract_inverted_index.typically | 4 |
| abstract_inverted_index.zero-shot | 38, 71 |
| abstract_inverted_index.end-to-end | 89 |
| abstract_inverted_index.extraction | 82 |
| abstract_inverted_index.supervised | 10 |
| abstract_inverted_index.contrastive | 54 |
| abstract_inverted_index.Aspect-based | 0 |
| abstract_inverted_index.aspect-based | 90 |
| abstract_inverted_index.post-training | 55 |
| abstract_inverted_index.classification | 86 |
| abstract_inverted_index.training/fine-tuning. | 11 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |