ZINB-WaVE: A general and flexible method for signal extraction from single-cell RNA-seq data Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1101/125112
Single-cell RNA sequencing (scRNA-seq) is a powerful high-throughput technique that enables researchers to measure genome-wide transcription levels at the resolution of single cells. Because of the low amount of RNA present in a single cell, some genes may fail to be detected even though they are expressed; these genes are usually referred to as dropouts. Here, we present a general and flexible zero-inflated negative binomial model (ZINB-WaVE), which leads to low-dimensional representations of the data that account for zero inflation (dropouts), over-dispersion, and the count nature of the data. We demonstrate, with simulated and real data, that the model and its associated estimation procedure are able to give a more stable and accurate low-dimensional representation of the data than principal component analysis (PCA) and zero-inflated factor analysis (ZIFA), without the need for a preliminary normalization step.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/125112
- https://www.biorxiv.org/content/biorxiv/early/2017/11/02/125112.full.pdf
- OA Status
- green
- Cited By
- 41
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2606690922
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2606690922Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/125112Digital Object Identifier
- Title
-
ZINB-WaVE: A general and flexible method for signal extraction from single-cell RNA-seq dataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-04-06Full publication date if available
- Authors
-
Davide Risso, Fanny Perraudeau, Svetlana Gribkova, Sandrine Dudoit, Jean‐Philippe VertList of authors in order
- Landing page
-
https://doi.org/10.1101/125112Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2017/11/02/125112.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2017/11/02/125112.full.pdfDirect OA link when available
- Concepts
-
Normalization (sociology), Negative binomial distribution, Principal component analysis, RNA-Seq, Computer science, Count data, Algorithm, Mathematics, Computational biology, Statistics, Pattern recognition (psychology), Gene, Biology, Artificial intelligence, Transcriptome, Genetics, Gene expression, Sociology, Poisson distribution, AnthropologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
41Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 5, 2022: 2, 2021: 5, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2606690922 |
|---|---|
| doi | https://doi.org/10.1101/125112 |
| ids.doi | https://doi.org/10.1101/125112 |
| ids.mag | 2606690922 |
| ids.openalex | https://openalex.org/W2606690922 |
| fwci | 3.74121187 |
| type | preprint |
| title | ZINB-WaVE: A general and flexible method for signal extraction from single-cell RNA-seq data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T10773 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9667999744415283 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Extracellular vesicles in disease |
| topics[2].id | https://openalex.org/T10885 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9607999920845032 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Gene expression and cancer classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C136886441 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6364459991455078 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[0].display_name | Normalization (sociology) |
| concepts[1].id | https://openalex.org/C199335787 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6291608810424805 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q743364 |
| concepts[1].display_name | Negative binomial distribution |
| concepts[2].id | https://openalex.org/C27438332 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5895529985427856 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[2].display_name | Principal component analysis |
| concepts[3].id | https://openalex.org/C107397762 |
| concepts[3].level | 5 |
| concepts[3].score | 0.5569333434104919 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2542347 |
| concepts[3].display_name | RNA-Seq |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4949321150779724 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C33643355 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4748975336551666 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5176731 |
| concepts[5].display_name | Count data |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4021114408969879 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.35508668422698975 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C70721500 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3339775800704956 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[8].display_name | Computational biology |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32804322242736816 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.32424771785736084 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.29607653617858887 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2736018896102905 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.27357935905456543 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C162317418 |
| concepts[14].level | 4 |
| concepts[14].score | 0.21101611852645874 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q252857 |
| concepts[14].display_name | Transcriptome |
| concepts[15].id | https://openalex.org/C54355233 |
| concepts[15].level | 1 |
| concepts[15].score | 0.17570915818214417 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[15].display_name | Genetics |
| concepts[16].id | https://openalex.org/C150194340 |
| concepts[16].level | 3 |
| concepts[16].score | 0.16863125562667847 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[16].display_name | Gene expression |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| concepts[18].id | https://openalex.org/C100906024 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q205692 |
| concepts[18].display_name | Poisson distribution |
| concepts[19].id | https://openalex.org/C19165224 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[19].display_name | Anthropology |
| keywords[0].id | https://openalex.org/keywords/normalization |
| keywords[0].score | 0.6364459991455078 |
| keywords[0].display_name | Normalization (sociology) |
| keywords[1].id | https://openalex.org/keywords/negative-binomial-distribution |
| keywords[1].score | 0.6291608810424805 |
| keywords[1].display_name | Negative binomial distribution |
| keywords[2].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[2].score | 0.5895529985427856 |
| keywords[2].display_name | Principal component analysis |
| keywords[3].id | https://openalex.org/keywords/rna-seq |
| keywords[3].score | 0.5569333434104919 |
| keywords[3].display_name | RNA-Seq |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4949321150779724 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/count-data |
| keywords[5].score | 0.4748975336551666 |
| keywords[5].display_name | Count data |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.4021114408969879 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.35508668422698975 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/computational-biology |
| keywords[8].score | 0.3339775800704956 |
| keywords[8].display_name | Computational biology |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.32804322242736816 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.32424771785736084 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/gene |
| keywords[11].score | 0.29607653617858887 |
| keywords[11].display_name | Gene |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.2736018896102905 |
| keywords[12].display_name | Biology |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.27357935905456543 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/transcriptome |
| keywords[14].score | 0.21101611852645874 |
| keywords[14].display_name | Transcriptome |
| keywords[15].id | https://openalex.org/keywords/genetics |
| keywords[15].score | 0.17570915818214417 |
| keywords[15].display_name | Genetics |
| keywords[16].id | https://openalex.org/keywords/gene-expression |
| keywords[16].score | 0.16863125562667847 |
| keywords[16].display_name | Gene expression |
| language | en |
| locations[0].id | doi:10.1101/125112 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2017/11/02/125112.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/125112 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5088632823 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8508-5012 |
| authorships[0].author.display_name | Davide Risso |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I205783295, https://openalex.org/I4387153466 |
| authorships[0].affiliations[0].raw_affiliation_string | Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, USA |
| authorships[0].institutions[0].id | https://openalex.org/I205783295 |
| authorships[0].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Cornell University |
| authorships[0].institutions[1].id | https://openalex.org/I4387153466 |
| authorships[0].institutions[1].ror | https://ror.org/02r109517 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I205783295, https://openalex.org/I4387153466 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Weill Cornell Medicine |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Davide Risso |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, USA |
| authorships[1].author.id | https://openalex.org/A5011203484 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1478-6983 |
| authorships[1].author.display_name | Fanny Perraudeau |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[1].affiliations[0].raw_affiliation_string | Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I95457486 |
| authorships[1].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Berkeley |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fanny Perraudeau |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA |
| authorships[2].author.id | https://openalex.org/A5036235313 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3271-633X |
| authorships[2].author.display_name | Svetlana Gribkova |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204730241, https://openalex.org/I4210147464 |
| authorships[2].affiliations[0].raw_affiliation_string | Laboratoire de Probabilités et Modèles Aléatoires, Université Paris Diderot, Paris, France |
| authorships[2].institutions[0].id | https://openalex.org/I4210147464 |
| authorships[2].institutions[0].ror | https://ror.org/04hjc7403 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1294671590, https://openalex.org/I204730241, https://openalex.org/I39804081, https://openalex.org/I4210141950, https://openalex.org/I4210147464 |
| authorships[2].institutions[0].country_code | FR |
| authorships[2].institutions[0].display_name | Laboratoire de Probabilités et Modèles Aléatoires |
| authorships[2].institutions[1].id | https://openalex.org/I204730241 |
| authorships[2].institutions[1].ror | https://ror.org/05f82e368 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I204730241 |
| authorships[2].institutions[1].country_code | FR |
| authorships[2].institutions[1].display_name | Université Paris Cité |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Svetlana Gribkova |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Laboratoire de Probabilités et Modèles Aléatoires, Université Paris Diderot, Paris, France |
| authorships[3].author.id | https://openalex.org/A5018207168 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6069-8629 |
| authorships[3].author.display_name | Sandrine Dudoit |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[3].affiliations[0].raw_affiliation_string | Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I95457486 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Statistics, University of California, Berkeley, CA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I95457486 |
| authorships[3].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Berkeley |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sandrine Dudoit |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Statistics, University of California, Berkeley, CA, USA, Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA |
| authorships[4].author.id | https://openalex.org/A5064770739 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9510-8441 |
| authorships[4].author.display_name | Jean‐Philippe Vert |
| authorships[4].countries | FR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I80043 |
| authorships[4].affiliations[0].raw_affiliation_string | Institut Curie, Paris, France |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I190752583, https://openalex.org/I2746051580 |
| authorships[4].affiliations[1].raw_affiliation_string | MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France |
| authorships[4].affiliations[2].raw_affiliation_string | Ecole Normale Supérieure, Department of Mathematics and Applications, Paris, France |
| authorships[4].affiliations[3].institution_ids | https://openalex.org/I154526488 |
| authorships[4].affiliations[3].raw_affiliation_string | INSERM U900, Paris, France |
| authorships[4].institutions[0].id | https://openalex.org/I154526488 |
| authorships[4].institutions[0].ror | https://ror.org/02vjkv261 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I154526488 |
| authorships[4].institutions[0].country_code | FR |
| authorships[4].institutions[0].display_name | Inserm |
| authorships[4].institutions[1].id | https://openalex.org/I80043 |
| authorships[4].institutions[1].ror | https://ror.org/04t0gwh46 |
| authorships[4].institutions[1].type | nonprofit |
| authorships[4].institutions[1].lineage | https://openalex.org/I80043 |
| authorships[4].institutions[1].country_code | FR |
| authorships[4].institutions[1].display_name | Institut Curie |
| authorships[4].institutions[2].id | https://openalex.org/I190752583 |
| authorships[4].institutions[2].ror | https://ror.org/05c2qg481 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I190752583 |
| authorships[4].institutions[2].country_code | FR |
| authorships[4].institutions[2].display_name | ParisTech |
| authorships[4].institutions[3].id | https://openalex.org/I2746051580 |
| authorships[4].institutions[3].ror | https://ror.org/013cjyk83 |
| authorships[4].institutions[3].type | education |
| authorships[4].institutions[3].lineage | https://openalex.org/I2746051580 |
| authorships[4].institutions[3].country_code | FR |
| authorships[4].institutions[3].display_name | Université Paris Sciences et Lettres |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jean-Philippe Vert |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Ecole Normale Supérieure, Department of Mathematics and Applications, Paris, France, INSERM U900, Paris, France, Institut Curie, Paris, France, MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2017/11/02/125112.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ZINB-WaVE: A general and flexible method for signal extraction from single-cell RNA-seq data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W2599805416, https://openalex.org/W3210390693, https://openalex.org/W2971731486, https://openalex.org/W2974887920, https://openalex.org/W4214644238, https://openalex.org/W3135460725, https://openalex.org/W2338849605, https://openalex.org/W3122903216, https://openalex.org/W4388336431, https://openalex.org/W2556931687 |
| cited_by_count | 41 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 6 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 9 |
| counts_by_year[7].year | 2017 |
| counts_by_year[7].cited_by_count | 12 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/125112 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2017/11/02/125112.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/125112 |
| primary_location.id | doi:10.1101/125112 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2017/11/02/125112.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/125112 |
| publication_date | 2017-04-06 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W1580018887, https://openalex.org/W2102212449, https://openalex.org/W2231058499, https://openalex.org/W1979283544, https://openalex.org/W2023887100, https://openalex.org/W2030017878, https://openalex.org/W2233603983, https://openalex.org/W2084942072, https://openalex.org/W2951638683, https://openalex.org/W2612502013, https://openalex.org/W2143787026, https://openalex.org/W2051658465, https://openalex.org/W2010653277, https://openalex.org/W1984883254, https://openalex.org/W2373831850, https://openalex.org/W1874466506, https://openalex.org/W2338081296, https://openalex.org/W2069089843, https://openalex.org/W2140258573, https://openalex.org/W2209349785, https://openalex.org/W2154598603, https://openalex.org/W2097308346, https://openalex.org/W2152692691, https://openalex.org/W2116650193, https://openalex.org/W2039521726, https://openalex.org/W2613078538, https://openalex.org/W2607806728, https://openalex.org/W2737169389, https://openalex.org/W2951506174, https://openalex.org/W1984689597, https://openalex.org/W4399637317, https://openalex.org/W2605810679, https://openalex.org/W6603136275, https://openalex.org/W2111882541, https://openalex.org/W2107665951, https://openalex.org/W2169353806, https://openalex.org/W2737123675, https://openalex.org/W2114104545, https://openalex.org/W2518994496, https://openalex.org/W2512273587, https://openalex.org/W2137499573, https://openalex.org/W2952153616, https://openalex.org/W1897931464, https://openalex.org/W2377729701, https://openalex.org/W2726570589, https://openalex.org/W2122090912, https://openalex.org/W1999574084, https://openalex.org/W2141458291, https://openalex.org/W2156631105, https://openalex.org/W2107018762, https://openalex.org/W2105860794, https://openalex.org/W2951158909, https://openalex.org/W2168342464, https://openalex.org/W1902461024, https://openalex.org/W2953251392, https://openalex.org/W2190545194, https://openalex.org/W1967327758, https://openalex.org/W2338756998, https://openalex.org/W2146130798, https://openalex.org/W2951799803, https://openalex.org/W2187089797 |
| referenced_works_count | 61 |
| abstract_inverted_index.a | 6, 33, 59, 109, 133 |
| abstract_inverted_index.We | 90 |
| abstract_inverted_index.as | 54 |
| abstract_inverted_index.at | 18 |
| abstract_inverted_index.be | 41 |
| abstract_inverted_index.in | 32 |
| abstract_inverted_index.is | 5 |
| abstract_inverted_index.of | 21, 25, 29, 73, 87, 116 |
| abstract_inverted_index.to | 13, 40, 53, 70, 107 |
| abstract_inverted_index.we | 57 |
| abstract_inverted_index.RNA | 2, 30 |
| abstract_inverted_index.and | 61, 83, 94, 100, 112, 124 |
| abstract_inverted_index.are | 46, 50, 105 |
| abstract_inverted_index.for | 78, 132 |
| abstract_inverted_index.its | 101 |
| abstract_inverted_index.low | 27 |
| abstract_inverted_index.may | 38 |
| abstract_inverted_index.the | 19, 26, 74, 84, 88, 98, 117, 130 |
| abstract_inverted_index.able | 106 |
| abstract_inverted_index.data | 75, 118 |
| abstract_inverted_index.even | 43 |
| abstract_inverted_index.fail | 39 |
| abstract_inverted_index.give | 108 |
| abstract_inverted_index.more | 110 |
| abstract_inverted_index.need | 131 |
| abstract_inverted_index.real | 95 |
| abstract_inverted_index.some | 36 |
| abstract_inverted_index.than | 119 |
| abstract_inverted_index.that | 10, 76, 97 |
| abstract_inverted_index.they | 45 |
| abstract_inverted_index.with | 92 |
| abstract_inverted_index.zero | 79 |
| abstract_inverted_index.(PCA) | 123 |
| abstract_inverted_index.Here, | 56 |
| abstract_inverted_index.cell, | 35 |
| abstract_inverted_index.count | 85 |
| abstract_inverted_index.data, | 96 |
| abstract_inverted_index.data. | 89 |
| abstract_inverted_index.genes | 37, 49 |
| abstract_inverted_index.leads | 69 |
| abstract_inverted_index.model | 66, 99 |
| abstract_inverted_index.step. | 136 |
| abstract_inverted_index.these | 48 |
| abstract_inverted_index.which | 68 |
| abstract_inverted_index.amount | 28 |
| abstract_inverted_index.cells. | 23 |
| abstract_inverted_index.factor | 126 |
| abstract_inverted_index.levels | 17 |
| abstract_inverted_index.nature | 86 |
| abstract_inverted_index.single | 22, 34 |
| abstract_inverted_index.stable | 111 |
| abstract_inverted_index.though | 44 |
| abstract_inverted_index.(ZIFA), | 128 |
| abstract_inverted_index.Because | 24 |
| abstract_inverted_index.account | 77 |
| abstract_inverted_index.enables | 11 |
| abstract_inverted_index.general | 60 |
| abstract_inverted_index.measure | 14 |
| abstract_inverted_index.present | 31, 58 |
| abstract_inverted_index.usually | 51 |
| abstract_inverted_index.without | 129 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accurate | 113 |
| abstract_inverted_index.analysis | 122, 127 |
| abstract_inverted_index.binomial | 65 |
| abstract_inverted_index.detected | 42 |
| abstract_inverted_index.flexible | 62 |
| abstract_inverted_index.negative | 64 |
| abstract_inverted_index.powerful | 7 |
| abstract_inverted_index.referred | 52 |
| abstract_inverted_index.component | 121 |
| abstract_inverted_index.dropouts. | 55 |
| abstract_inverted_index.inflation | 80 |
| abstract_inverted_index.principal | 120 |
| abstract_inverted_index.procedure | 104 |
| abstract_inverted_index.simulated | 93 |
| abstract_inverted_index.technique | 9 |
| abstract_inverted_index.associated | 102 |
| abstract_inverted_index.estimation | 103 |
| abstract_inverted_index.expressed; | 47 |
| abstract_inverted_index.resolution | 20 |
| abstract_inverted_index.sequencing | 3 |
| abstract_inverted_index.(dropouts), | 81 |
| abstract_inverted_index.(scRNA-seq) | 4 |
| abstract_inverted_index.Single-cell | 1 |
| abstract_inverted_index.genome-wide | 15 |
| abstract_inverted_index.preliminary | 134 |
| abstract_inverted_index.researchers | 12 |
| abstract_inverted_index.(ZINB-WaVE), | 67 |
| abstract_inverted_index.demonstrate, | 91 |
| abstract_inverted_index.normalization | 135 |
| abstract_inverted_index.transcription | 16 |
| abstract_inverted_index.zero-inflated | 63, 125 |
| abstract_inverted_index.representation | 115 |
| abstract_inverted_index.high-throughput | 8 |
| abstract_inverted_index.low-dimensional | 71, 114 |
| abstract_inverted_index.representations | 72 |
| abstract_inverted_index.over-dispersion, | 82 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5018207168, https://openalex.org/A5064770739 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I154526488, https://openalex.org/I190752583, https://openalex.org/I2746051580, https://openalex.org/I80043, https://openalex.org/I95457486 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.92202921 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |