Andrés Almansa
YOU?
Author Swipe
View article: Blur2seq: Blind Deblurring and Camera Trajectory Estimation from a Single Camera Motion-blurred Image
Blur2seq: Blind Deblurring and Camera Trajectory Estimation from a Single Camera Motion-blurred Image Open
Motion blur caused by camera shake, particularly under large or rotational movements, remains a major challenge in image restoration. We propose a deep learning framework that jointly estimates the latent sharp image and the underlying cam…
View article: LVTINO: LAtent Video consisTency INverse sOlver for High Definition Video Restoration
LVTINO: LAtent Video consisTency INverse sOlver for High Definition Video Restoration Open
Computational imaging methods increasingly rely on powerful generative diffusion models to tackle challenging image restoration tasks. In particular, state-of-the-art zero-shot image inverse solvers leverage distilled text-to-image latent …
View article: Infusion: Internal Diffusion for Inpainting of Dynamic Textures and Complex Motion
Infusion: Internal Diffusion for Inpainting of Dynamic Textures and Complex Motion Open
Video inpainting is the task of filling a region in a video in a visually convincing manner It is very challenging due to the high dimensionality of the data and the temporal consistency required for obtaining convincing results. Recently,…
View article: LATINO-PRO: LAtent consisTency INverse sOlver with PRompt Optimization
LATINO-PRO: LAtent consisTency INverse sOlver with PRompt Optimization Open
Text-to-image latent diffusion models (LDMs) have recently emerged as powerful generative models with great potential for solving inverse problems in imaging. However, leveraging such models in a Plug & Play (PnP), zero-shot manner remains…
View article: Memoria histórica y pensamiento crítico: una experiencia de innovación didáctica sobre el franquismo en un aula de 4º de la ESO
Memoria histórica y pensamiento crítico: una experiencia de innovación didáctica sobre el franquismo en un aula de 4º de la ESO Open
Este trabajo lleva a cabo un estudio de caso descriptivo en un aula de 4º de la ESO en la que se aborda, desde Geografía e Historia, la cuestión problemática de la memoria histórica a partir de la dictadura franquista. La experiencia didác…
View article: Memoria histórica y pensamiento crítico: una experiencia de innovación didáctica sobre el franquismo en un aula de 4º de la ESO
Memoria histórica y pensamiento crítico: una experiencia de innovación didáctica sobre el franquismo en un aula de 4º de la ESO Open
Este trabajo lleva a cabo un estudio de caso descriptivo en un aula de 4º de la ESO en la que se aborda, desde Geografía e Historia, la cuestión problemática de la memoria histórica a partir de la dictadura franquista. La experiencia didác…
View article: Hyperspectral Signal Reconstruction from Interferometric Measurements with Enriched Fourier Bases
Hyperspectral Signal Reconstruction from Interferometric Measurements with Enriched Fourier Bases Open
International audience
View article: Linear Super-Resolution Through Translational Motion
Linear Super-Resolution Through Translational Motion Open
The problem of computing a single super-resolved image from multiple shifted images of the same scene has been addressed in several ways in the literature, with different levels of assumptions on the image to reconstruct, but a frequent co…
View article: Diffusion-based image inpainting with internal learning
Diffusion-based image inpainting with internal learning Open
Diffusion models are now the undisputed state-of-the-art for image generation and image restoration. However, they require large amounts of computational power for training and inference. In this paper, we propose lightweight diffusion mod…
View article: Apprentissage d'une fonction de régularisation locale pour la restauration d'images
Apprentissage d'une fonction de régularisation locale pour la restauration d'images Open
Dans ce travail, nous élaborons une stratégie afin d’apprendre une fonction de régularisation pour résoudre des problèmes de restauration d’images. Une fonction de régularisation locale, paramétrée par un réseau de neurones convolutif, est…
View article: Impact of image registration errors on the quality of hyperspectral images in imaging static Fourier transform spectrometry
Impact of image registration errors on the quality of hyperspectral images in imaging static Fourier transform spectrometry Open
Imaging static Fourier transform spectrometry (isFTS) is used for pushbroom airborne or spaceborne hyperspectral remote sensing. In isFTS, a static two-wave interferometer imprints linear interference fringes over the image of the scene, s…
View article: Fast Diffusion EM: a diffusion model for blind inverse problems with application to deconvolution
Fast Diffusion EM: a diffusion model for blind inverse problems with application to deconvolution Open
Using diffusion models to solve inverse problems is a growing field of research. Current methods assume the degradation to be known and provide impressive results in terms of restoration quality and diversity. In this work, we leverage the…
View article: Efficient Posterior Sampling for Diverse Super-Resolution with Hierarchical VAE Prior
Efficient Posterior Sampling for Diverse Super-Resolution with Hierarchical VAE Prior Open
We investigate the problem of producing diverse solutions to an image super-resolution problem.From a probabilistic perspective, this can be done by sampling from the posterior distribution of an inverse problem, which requires the definit…
View article: Infusion: internal diffusion for inpainting of dynamic textures and complex motion
Infusion: internal diffusion for inpainting of dynamic textures and complex motion Open
Video inpainting is the task of filling a region in a video in a visually convincing manner. It is very challenging due to the high dimensionality of the data and the temporal consistency required for obtaining convincing results. Recently…
View article: Patch-based stochastic attention for image editing
Patch-based stochastic attention for image editing Open
View article: Plug-and-Play Posterior Sampling under Mismatched Measurement and Prior Models
Plug-and-Play Posterior Sampling under Mismatched Measurement and Prior Models Open
Posterior sampling has been shown to be a powerful Bayesian approach for solving imaging inverse problems. The recent plug-and-play unadjusted Langevin algorithm (PnP-ULA) has emerged as a promising method for Monte Carlo sampling and mini…
View article: Modèle de diffusion frugal pour l'inpainting d'images
Modèle de diffusion frugal pour l'inpainting d'images Open
National audience
View article: Imaging static Fourier transform spectrometry: impact of trajectory perturbations on the hyperspectral images
Imaging static Fourier transform spectrometry: impact of trajectory perturbations on the hyperspectral images Open
Imaging static Fourier transform spectrometry (isFTS) may be used for pushbroom air-or spaceborne hyperspectral remote sensing.In isFTS, the spectral information is multiplexed over several instantaneous images, and numerical reconstructio…
View article: «epidemia» del sport. Educación, socialización y expansión del deporte en Galicia y Cataluña (1870-1914)
«epidemia» del sport. Educación, socialización y expansión del deporte en Galicia y Cataluña (1870-1914) Open
Desde la perspectiva comparada analizamos la introducción y el arraigo social del fenómeno deportivo en Galicia y Cataluña. El proceso comenzó en los gimnasios, iniciando un modelo asociativo que paliaba la ausencia de cultura física en el…
View article: Inverse problem regularization with hierarchical variational autoencoders
Inverse problem regularization with hierarchical variational autoencoders Open
In this paper, we propose to regularize ill-posed inverse problems using a deep hierarchical variational autoencoder (HVAE) as an image prior. The proposed method synthesizes the advantages of i) denoiser-based Plug \& Play approaches and …
View article: Deep Model-Based Super-Resolution with Non-uniform Blur
Deep Model-Based Super-Resolution with Non-uniform Blur Open
We propose a state-of-the-art method for super-resolution with non-uniform\nblur. Single-image super-resolution methods seek to restore a high-resolution\nimage from blurred, subsampled, and noisy measurements. Despite their\nimpressive pe…
View article: On Maximum a Posteriori Estimation with Plug & Play Priors and Stochastic Gradient Descent
On Maximum a Posteriori Estimation with Plug & Play Priors and Stochastic Gradient Descent Open
View article: Provably Convergent Plug & Play Linearized ADMM, applied to Deblurring Spatially Varying Kernels
Provably Convergent Plug & Play Linearized ADMM, applied to Deblurring Spatially Varying Kernels Open
Plug & Play methods combine proximal algorithms with denoiser priors to solve inverse problems. These methods rely on the computability of the proximal operator of the data fidelity term. In this paper, we propose a Plug & Play framework b…
View article: Video Restoration with a Deep Plug-and-Play Prior
Video Restoration with a Deep Plug-and-Play Prior Open
This paper presents a novel method for restoring digital videos via a Deep Plug-and-Play (PnP) approach. Under a Bayesian formalism, the method consists in using a deep convolutional denoising network in place of the proximal operator of t…
View article: Solving Inverse Problems by Joint Posterior Maximization with Autoencoding Prior
Solving Inverse Problems by Joint Posterior Maximization with Autoencoding Prior Open
International audience
View article: Bayesian Imaging Using Plug & Play Priors: When Langevin Meets Tweedie
Bayesian Imaging Using Plug & Play Priors: When Langevin Meets Tweedie Open
International audience
View article: Diverse super-resolution with pretrained deep hiererarchical VAEs
Diverse super-resolution with pretrained deep hiererarchical VAEs Open
We investigate the problem of producing diverse solutions to an image super-resolution problem. From a probabilistic perspective, this can be done by sampling from the posterior distribution of an inverse problem, which requires the defini…
View article: On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic gradient descent
On Maximum-a-Posteriori estimation with Plug & Play priors and stochastic gradient descent Open
Bayesian methods to solve imaging inverse problems usually combine an explicit data likelihood function with a prior distribution that explicitly models expected properties of the solution. Many kinds of priors have been explored in the li…
View article: Diverse Super-Resolution with Pretrained Hierarchical Variational Autoencoders
Diverse Super-Resolution with Pretrained Hierarchical Variational Autoencoders Open
View article: Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie Open
Since the seminal work of Venkatakrishnan et al. in 2013, Plug & Play (PnP) methods have become ubiquitous in Bayesian imaging. These methods derive Minimum Mean Square Error (MMSE) or Maximum A Posteriori (MAP) estimators for inverse prob…