Valeria Guarnaccia
YOU?
Author Swipe
View article: Initial ribociclib plus endocrine therapy for <scp>HR</scp>+/<scp>HER2</scp>− advanced breast cancer in pre‐ and postmenopausal Chinese women: Primary results from a phase 2 randomized study
Initial ribociclib plus endocrine therapy for <span>HR</span>+/<span>HER2</span>− advanced breast cancer in pre‐ and postmenopausal Chinese women: Primary results from a phase 2 randomized study Open
Background The MONALEESA‐7 and ‐2 phase 3 randomized trials demonstrated a statistically significant progression‐free survival (PFS) and overall survival (OS) benefit with initial ribociclib + endocrine therapy (ET) versus placebo + ET in …
View article: Supplementary Methods from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Supplementary Methods from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
Supplementary Methods from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
View article: Data from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Data from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
The peptidyl-prolyl-isomerase Pin1 interacts with phosphorylated proteins, altering their conformation. The retinoic acid receptor RARα and the acute-promyelocytic-leukemia–specific counterpart PML-RARα directly interact with Pin1. Overexp…
View article: Supplementary Table 1 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Supplementary Table 1 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
Supplementary Table 1 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
View article: Supplementary Figure Legends 1-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Supplementary Figure Legends 1-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
Supplementary Figure Legends 1-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
View article: Supplementary Figures 1-5 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Supplementary Figures 1-5 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
Supplementary Figures 1-5 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
View article: Supplementary Figures 6-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Supplementary Figures 6-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
Supplementary Figures 6-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
View article: Supplementary Figures 1-5 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Supplementary Figures 1-5 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
Supplementary Figures 1-5 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
View article: Supplementary Figures 6-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Supplementary Figures 6-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
Supplementary Figures 6-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
View article: Supplementary Table 1 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Supplementary Table 1 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
Supplementary Table 1 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
View article: Supplementary Figure Legends 1-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Supplementary Figure Legends 1-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
Supplementary Figure Legends 1-9 from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
View article: Supplementary Methods from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Supplementary Methods from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
Supplementary Methods from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
View article: Data from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα
Data from Inhibition of the Peptidyl-Prolyl-Isomerase Pin1 Enhances the Responses of Acute Myeloid Leukemia Cells to Retinoic Acid via Stabilization of RARα and PML-RARα Open
The peptidyl-prolyl-isomerase Pin1 interacts with phosphorylated proteins, altering their conformation. The retinoic acid receptor RARα and the acute-promyelocytic-leukemia–specific counterpart PML-RARα directly interact with Pin1. Overexp…
View article: Association of<i>CFHR1</i>homozygous deletion with acute myelogenous leukemia in the European population
Association of<i>CFHR1</i>homozygous deletion with acute myelogenous leukemia in the European population Open
Acute myeloid leukemia (AML) is a rare disease with an estimated incidence of 14 500 and 2500 cases/year in the USA and Italy, respectively. AML is subdivided into groups according to the presence/...