MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES Article Swipe
I. Pölönen
,
Kimmo A. Riihiaho
,
Anna-Maria Hakola
,
Leevi Annala
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xliii-b3-2020-467-2020
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xliii-b3-2020-467-2020
Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel distance-based classification algorithm, which is now modified to detect anomalies. Besides being computationally efficient, minimal learning machine is also easy to implement. Based on the results, we show that minimal learning machine is efficient in detecting global anomalies from the hyperspectral data with low false alarm rate.
Related Topics To Compare & Contrast
Concepts
Hyperspectral imaging
Anomaly detection
Computer science
Constant false alarm rate
Artificial intelligence
Data cube
Pattern recognition (psychology)
Machine learning
Data mining
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xliii-b3-2020-467-2020
- https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/467/2020/isprs-archives-XLIII-B3-2020-467-2020.pdf
- OA Status
- diamond
- Cited By
- 2
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3080512163
All OpenAlex metadata
Raw OpenAlex JSON
No additional metadata available.