main webpage
W Topic
Data Mining
Graph-Based Model-Agnostic Data Subsampling for Recommendation Systems
2023
Data subsampling is widely used to speed up the training of large-scale recommendation systems. Most subsampling methods are model-based and often require a pre-trained pilot model to measure data importance via e.g. sample hardness. However, when the pilot m…
Article

Data Mining

Process of extracting and discovering patterns in large data sets

Data mining is the process of extracting and finding patterns in massive data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is an interdisciplinary subfield of computer science and statistics with an overall goal of extracting information (with intelligent methods) from a data set and transforming the information into a comprehensible structure for further use. Data mining is the analysis step of the "knowledge discovery in databases" process, or KDD.

Exploring foci of:
Graph-Based Model-Agnostic Data Subsampling for Recommendation Systems
2023
Data subsampling is widely used to speed up the training of large-scale recommendation systems. Most subsampling methods are model-based and often require a pre-trained pilot model to measure data importance via e.g. sample hardness. However, when the pilot model is misspecified, model-based subsampling methods deteriorate. Since model misspecification is persistent in real recommendation systems, we instead propose model-agnostic data subsampling methods by only exploring input data structure represented by graph…
Click Data Mining Vs:
Computer Science
Recommender System
Artificial Intelligence
Machine Learning
Theoretical Computer Science
Database