Convergence and Complexity of an Adaptive Planewave Method for Eigenvalue Computations Article Swipe
Xiaoying Dai
,
Yan Pan
,
Bin Yang Bin Yang
,
Aihui Zhou
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.4208/aamm.oa-2023-0099
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.4208/aamm.oa-2023-0099
In this paper, we study the adaptive planewave discretization for a cluster of eigenvalues of second-order elliptic partial differential equations. We first design an a posteriori error estimator and prove both the upper and lower bounds. Based on the a posteriori error estimator, we propose an adaptive planewave method. We then prove that the adaptive planewave approximations have the linear convergence rate and quasi-optimal complexity.
Related Topics To Compare & Contrast
Concepts
Estimator
Mathematics
Eigenvalues and eigenvectors
A priori and a posteriori
Rate of convergence
Discretization
Convergence (economics)
Applied mathematics
Mathematical optimization
Computer science
Mathematical analysis
Key (lock)
Physics
Computer security
Economics
Philosophy
Quantum mechanics
Statistics
Epistemology
Economic growth
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4208/aamm.oa-2023-0099
- https://global-sci.org/intro/online/preview?online_id=2160&pdf=https://doc.global-sci.org/uploads/admin/article_pdf/20231222/2a25007c3addce3bf7811d7d2313c0f8.pdf
- OA Status
- bronze
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390115864
All OpenAlex metadata
Raw OpenAlex JSON
No additional metadata available.