main webpage
W Topic
Machine Learning
arXiv (Cornell University)
Fine-Tuning Language Models via Epistemic Neural Networks
2022
Language models often pre-train on large unsupervised text corpora, then fine-tune on additional task-specific data. However, typical fine-tuning schemes do not prioritize the examples that they tune on. We show that, if you can prioritize informative trainin…
Article

Machine Learning

Study of algorithms that improve automatically through experience

Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalise to unseen data, and thus perform tasks without explicit instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance.

ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics.

Exploring foci of:
arXiv (Cornell University)
Fine-Tuning Language Models via Epistemic Neural Networks
2022
Language models often pre-train on large unsupervised text corpora, then fine-tune on additional task-specific data. However, typical fine-tuning schemes do not prioritize the examples that they tune on. We show that, if you can prioritize informative training data, you can achieve better performance while using fewer labels. To do this we augment a language model with an epinet: a small additional network that helps to estimate model uncertainty and forms an \textit{epistemic neural network} (ENN). ENNs are neura…
Click Machine Learning Vs:
Computer Science
Artificial Intelligence
Heuristic
Deep Learning
Generative Grammar
Training, Validation, And Test Data Sets
Management
Economics