Tinnitus classification based on resting-state functional connectivity using a convolutional neural network architecture Article Swipe
Qianhui Xu
,
Leilei Zhou
,
Chunhua Xing
,
Xiaomin Xu
,
Yuan Feng
,
Han Lv
,
Fei Zhao
,
Yu‐Chen Chen
,
Yuexin Cai
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.neuroimage.2024.120566
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.neuroimage.2024.120566
Our CNN model could appropriately tackle the diagnosis of tinnitus patients using rs-fMRI and confirmed the diagnostic value of FC as measured by rs-fMRI.
Related Topics To Compare & Contrast
Concepts
Tinnitus
Default mode network
Convolutional neural network
Salience (neuroscience)
Resting state fMRI
Computer science
Functional connectivity
Artificial intelligence
Neuroimaging
Audiology
Psychology
Neuroscience
Pattern recognition (psychology)
Medicine
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.neuroimage.2024.120566
- OA Status
- gold
- Cited By
- 7
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393178845
All OpenAlex metadata
Raw OpenAlex JSON
No additional metadata available.