main webpage
W Topic
Parallel Computing
Efficient warp execution in presence of divergence with collaborative context collection
2015
GPU's SIMD architecture is a double-edged sword confronting parallel tasks with control flow divergence. On the one hand, it provides a high performance yet power-efficient platform to accelerate applications via massive parallelism; however, on the other han…
Article

Parallel Computing

Programming paradigm in which many processes are executed simultaneously

Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high- performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling. As power consumption (and consequently heat generation) by computers has become a concern in recent years, parallel computing has become the dominant paradigm in computer architecture, mainly in the form of multi-core processors.

Exploring foci of:
Efficient warp execution in presence of divergence with collaborative context collection
2015
GPU's SIMD architecture is a double-edged sword confronting parallel tasks with control flow divergence. On the one hand, it provides a high performance yet power-efficient platform to accelerate applications via massive parallelism; however, on the other hand, irregularities induce inefficiencies due to the warp's lockstep traversal of all diverging execution paths. In this work, we present a software (compiler) technique named Collaborative Context Collection (CCC) that increases the warp execution efficiency wh…
Click Parallel Computing Vs:
Computer Science
Cuda
Programming Language