Multi-Modal Joint Pulsed Eddy Current Sensor Signal Denoising Method Integrating Inductive Disturbance Mechanism Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25123830
Pulsed eddy current (PEC) testing technology has been widely used in the field of non-destructive testing of metal grounding structures due to its wide-band excitation and response characteristics. However, multi-source noise in industrial environments can significantly degrade the performance of PEC sensors, thereby limiting their detection accuracy. This study proposes a multi-modal joint pulsed eddy current signal sensor denoising method that integrates the inductive disturbance mechanism. This method constructs the Improved Whale Optimization -Variational Mode Decomposition-Singular Value Decomposition-Wavelet Threshold Denoising (IWOA-VMD-SVD-WTD) fourth-order processing architecture: IWOA adaptively optimizes the VMD essential variables (K, α) and employs the optimized VMD to decompose the perception coefficient (IMF) of the PEC signal. It utilizes the correlation coefficient criterion to filter and identify the primary noise components within the signal, and the SVD-WTD joint denoising model is established to reconstruct each component to remove the noise signal received by the PEC sensor. To ascertain the efficacy of this approach, we compared the IWOA-VMD-SVD-WTD method with other denoising methods under three different noise levels through experiments. The test results show that compared with other VMD-based denoising techniques, the average signal-to-noise ratio (SNR) of the PEC signal received by the receiving coil for 200 noise signals in different noise environments is 24.31 dB, 29.72 dB and 29.64 dB, respectively. The average SNR of the other two denoising techniques in different noise environments is 15.48 dB, 18.87 dB, 18.46 dB and 19.32 dB, 27.13 dB, 26.78 dB, respectively, which is significantly better than other denoising methods. In addition, in practical applications, this method is better than other technologies in denoising PEC signals and successfully achieves noise reduction and signal feature extraction. This study provides a new technical solution for extracting pure and impurity-free PEC signals in complex electromagnetic environments.
Related Topics To Compare & Contrast
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25123830
- https://www.mdpi.com/1424-8220/25/12/3830/pdf?version=1750341689
- OA Status
- gold
- Cited By
- 2
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411466470