Development and Validation of a Convolutional Neural Network for Automated Detection of Scaphoid Fractures on Conventional Radiographs Article Swipe
Nils Hendrix
,
Ernst T. Scholten
,
Bastiaan Vernhout
,
Stefan Bruijnen
,
Bas Maresch
,
Mathijn de Jong
,
S.C.E. Diepstraten
,
Stijn Bollen
,
Steven Schalekamp
,
Maarten de Rooij
,
Alexander Scholtens
,
Ward Hendrix
,
Tijs Samson
,
Lee‐Ling Sharon Ong
,
Eric Postma
,
Bram van Ginneken
,
Matthieu Rutten
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1148/ryai.2021200260
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1148/ryai.2021200260
The developed CNN achieved radiologist-level performance in detecting scaphoid bone fractures on conventional radiographs of the hand, wrist, and scaphoid.Keywords: Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms, Feature Detection-Vision-Application Domain, Computer-Aided DiagnosisSee also the commentary by Li and Torriani in this issue.Supplemental material is available for this article.©RSNA, 2021.
Related Topics To Compare & Contrast
Concepts
Medicine
Radiography
Receiver operating characteristic
Convolutional neural network
Scaphoid fracture
Wrist
Segmentation
Scaphoid bone
Artificial intelligence
Nuclear medicine
Radiology
Internal medicine
Computer science
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1148/ryai.2021200260
- OA Status
- green
- Cited By
- 44
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3157550358
All OpenAlex metadata
Raw OpenAlex JSON
No additional metadata available.