Effect of Water Ring Flow Rate Ratio on Preparation of Yttrium Oxide Coatings by Suspension Plasma Spray Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/coatings15111304
· OA: W4415991906
Yttrium oxide (Y2O3) is a crucial protective material for the inner walls of semiconductor etching chambers. This study employed Suspension Plasma Spray (SPS) technology to deposit Y2O3 coatings on AISI 304 stainless steel substrates. A water ring guide cover, which injects deionized water toward the center of the plasma flame at the torch outlet, was installed. The critical parameter ratio between the water ring flow rate and the suspension feed rate was investigated, with a specific focus on its influence on the coating’s microstructure and mechanical properties. The findings reveal that this parameter exhibits a significant positive correlation with porosity, with the coefficient of determination R2 for their linear fit reaching 0.91236. When the water ring flow rate ratio was reduced to 79.66%, the porosity decreased to 0.946%, while the primary composition of the coating remained unchanged. Bond strength tests demonstrated that the adhesion strength of the coating exhibits an upward trend with increasing proportion of water ring flow. The adhesion strength reached its maximum value of 27.02 MPa when the water ring flow rate proportion was increased to 85.45%. Roughness exhibits a non-monotonic variation trend within the ratio range, attaining its optimal minimum value at the lower end of the ratio, indicating complex interrelationships among process characteristics. This work concludes that a low water ring flow rate ratio is essential for fabricating dense, well-adhered, and smooth Y2O3 coatings via SPS, providing a critical guideline for process optimization for applications such as semiconductor protection.