Three-dimensional C-scan-based generation adversarial network with synthetic input to improve optical coherence tomography angiography Article Swipe
Jingjiang Xu
,
Zhongwu Feng
,
Haixia Qiu
,
Peijun Tang
,
Kai Gao
,
Yanping Huang
,
Gongpu Lan
,
Jia Qin
,
Lin An
,
Gangyong Jia
,
Q. M. Jonathan Wu
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1117/1.jbo.30.5.056006
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1117/1.jbo.30.5.056006
It demonstrates that the proposed 3DCS-GAN can greatly improve vascular visualization in the deep layer, provide better image quality than the multiple averaged OCTA images, and achieve superior image enhancement for volumetric OCTA data.
Related Topics To Compare & Contrast
Concepts
Optical coherence tomography
Computer science
Angiography
Coherence (philosophical gambling strategy)
Tomography
Optics
Optical coherence tomography angiography
Artificial intelligence
Adversarial system
Radiology
Physics
Medicine
Quantum mechanics
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1117/1.jbo.30.5.056006
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410264748
All OpenAlex metadata
Raw OpenAlex JSON
No additional metadata available.