Prime Number Theorem
Swipe Prime Number Theorem Vs...
Prime Number Theorem News
Description
In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they become larger by precisely quantifying the rate at which this occurs. The theorem was proved independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896 using ideas introduced by Bernhard Riemann (in particular, the Riemann zeta function).
The first such distribution found is π(N) ~ N /log(N), where π(N) is the prime-counting function (the number of primes less than or equal to N) and log(N) is the natural logarithm of N. This means that for large enough N, the probability that a random integer not greater than N is prime is very close to 1 / log(N). In other words, the average gap between consecutive prime numbers among the first N integers is roughly log(N). Consequently, a random integer with at most 2 n digits (for large enough n) is about half as likely to be prime as a random integer with at most n digits. For example, among the positive integers of at most 1000 digits, about one in 2300 is prime (log(101000) ≈ 2302.6), whereas among positive integers of at most 2000 digits, about one in 4600 is prime (log(102000) ≈ 4605.2).
Related
MoreTags
Collections
Details
- Slug: prime-number-theorem
- Instance Count: 1
- Total Views: 494
- Added: Jul 20, 2024
- Last Updated: Oct 13, 2025